Sandia
National
Laboratories

Introduction to the Structural
Simulation Toolkit (SST)

Si Hammond and Clay Hughes, Scalable Computer Architectures
- — - — [@ENERGY NS4

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
SAN DZO 1 8 - 345 3 P E LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

04/03/2018

Images courtesy of Sandia National Laboratories and Oak Ridge National Laboratory

2

Overview of What our Applications Really Look Like...

Floating Point Intensity

Approx 20% of FP is vectorized

Approx 15% is FP Instruction

Vectorization Breakdown

B Non-FP Ins ONon-Masked FP Ins OScalar FP Ins @ Masked FP Ins

OMasked FP Ins

1.4E+13

1.2E+13

Instructions

04/03/2018

1E+13

8E+12

6E+12

4E+12

2E+12

0

100% +

B Non-Masked Vec FP Ins

I H B

80%

60%

40%

20%

Intel 16.2 Intel 17.4 Intel 18.0 0%

Approx 35% is “wide” vectorized

Vector Op Breakdown

02-Ops O4-Ops m8-Ops MW16-Ops

“Wide vectors (AVX2/AVX512)”

100% -

80% -

60%

40%

20%

0%

Intel 16.2 Intel 17.4 Intel 18.0

\ Intel 16.2 Intel 17.4 Intel 18.0

3 ‘ The Path to the Hardware of Tomorrow

‘ > >)

One Vendor, One Solution (which tries to satisfy everyone)

One vendor integrates everything, one fixed solution for every problem
Probably in the rearview mirror for most of HPC systems now
Little flexibility, less hardware tuning

Take what you get given (usually get lots you don’t want)

04/03/2018

4+ | The Path to the Hardware of Tomorrow

Multi Vendor, Protocol Integration

Multiple vendors working together, not integrated hardware
Support for a shared protocol

Seeing this with emerging IBM + NVIDIA solutions
CCIX, Gen-Z, OpenCAPI eze

04/03/2018

IBM NVIDIA
Source: NVIDIA

s | The Path to the Hardware of Tomorrow

04/03/2018

One Vendor, “Shopping List SoC”

Buy a solution from one vendor from an IP catalogue
Cherry pick components which are optimized/appropriate for your workload
Complex task for mixed workload environments like DOE (not easy)

Does one vendor have everything you need?

Google TPU
Source: Google

s | The Path to the Hardware of Tomorrow

e

Customer + Silicon Provider SoC

Custom IP included in SoC

Apple A12 SoC

Photo: Apple
Becomes true plug and play for hardware, allows customization where

workload permits

Issue is validation. Open source hardware/HPC has a role to play

®-
>
i
N

VTIKOO782 T)X0078 0939

g .aug'g;~.0.\.ﬂROEM

04/03/2018

;7 | The Path to the Hardware of Tomorrow

e

Conventional IP Library + Non-Conventional IP in SoC

Emergence of non-conventional IP (quantum, neuromorphic, e%) in a single SoC
Possible from IP catalogue but could be custom/open source components

Potentially greater optimization across complex workloads

04/03/2018

Thoughts on the Long Term Path

8

Exciting to see huge potential far in the future for HPC
° The best of HPC really is yet to come, this 1s just the beginning

But .. this is a really complex path to follow

Needs a very good understanding of workloads, not just hardware
Diverse and flexible IP catalogue (commercial and open source)
Validation is the challenge (particularly for rea/ solutions in HPC space)
Significant upside for some workloads but not all

Gives life into silicon even when Moore’s law finally is dead!

04/03/2018

|
9 | But You’re Supposed to be Talking about SST...

In order to realize such a diverse hardware-jungle future, we need a really ‘
flexible, agile way to simulate/emulate potential future systems
|
L

In an ideal world:

\

° Very fast to execute simulator

®-
—
VTKOO782 T)K0078 0939

i 11 B . 1 ‘\ 3 ENETONOMTROEM
°> Broad cross-section models E Y | | .
> Models that play well together

o Extensible as new ideas emerge

04/03/2018

& Ay ‘
y s o4
hS .
g
, B >
ik .
', . = N :
y Mt g ¥
— K
=
- - 4 Uy
! IlI|
LT LT

04/03/20
18

11 Wh)’ SST?

Problem: Simulation 1s slow
° Tradeoff between accuracy and time to simulate

> Many simulators are serial, unable to simulate very large systems

Problem: Lack of simulator flexibility
° Tightly-coupled simulations: Difficult to modity

° Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:
A parallel, discrete-event simulation framework
for scalability and flexibility

04/03/2018

2 I What is SST?

Goals Status

« Become the standard architectural simulation » Parallel Core, basic components

framework for HPC » Current Release (7.2)
» Be able to evaluate future systems on DOE/DOD * Improved components

workloads * Modular core/elements
* Use supercomputers to design supercomputers * More Internal documentation I

Technical Approach Consortium i
* Parallel » “Best of Breed” simulation suite
« Parallel Discrete Event core with conservative « Combine Lab, Academic & Industry UI_.

optimization over MPI/Threads

« Multiscale ,.5 T
* Detailed and simple models for processor, network, 4 ., —
& memory ot cem5 @
* Interoperability > ™) —— — —
- DRAMSIim, ,memory models L—‘%"JE (ﬁa ¥Ribe H=

* routers, NICs, schedulers l m |
’ Open M ==Av¢f2|cron (|@

. Mellanox
* Open Core, non-viral, modular *

= BOSTON |[JVA\I 0 .
NVIDIA. UNIVERSITY | TR ARM

04/03/2018

13 I Key Capabilities

Parallel
° Built from the ground up to be scalable
> Demonstrated scaling to 512+ host processors

> Conservative, Distance-based Optimization
> MPI + Threads

Flexible

°> Enables “mix and match” of simulation components

> Multiscale tradeoff between accuracy and simulation time
° eg., cycle-accurate network with trace-driven endpoints

> Open API
> Easily extensible with new models
> Modular framework
> Open-source core (but BSD licensed so works with commercial partners too)

04/03/2018

14 | SST’s Discrete-Event Algorithm

SST
. 53T SST SST Link Component
Component Link Component Component Component N | ;iency: 2ns Type: NoC
Type: Core Type: Cache :
Event Router

x &

SST Core 5 %

. - <

Instantiation Time Qg

Coordination -

Configuration
Parallel SST SST - ComSSo-I;rent
Parititioning Communication Component Component SST Link T P NoC
Type: Core Type: Cache Latency: 2ns ylgoe;te?

Simulations are comprised of components connected by links
Components interact by sending events over links
Each link has a minimum latency

Components can load SubComponents and modules for additional functionality

04/03/2018

15 | Key Simulation Objects

SST::Component @
o Simulation model
SST::Link \l

o Communication path between two components

> Has optional EventHandler

SST::Event

o A discrete event

SST::Clock::Handler

o> Function to handle a clock tick

SST::Component

CPU

EventHandler

/

/ SST::Event
X

Load

.L1IN

T

EventHandler D
SST::Component
Cache /

04/03/2018

6 1 Component

Basic building block of a simulation model = Performs actual simulation

° e.g., processot, cache, network router, etc.

Uses Links and Ports to communication with other components
> Components define ports, links connect ports between components
° Polled: Register a clock handler to poll the link
° Interrupt: Register an event handler to be called when an event arrives

° Both: Recetve events on interrupt, send events on clock

04/03/2018

17 Link

Connects two components

o Connect a speciﬁc “Port” on component A to a “Port” on component B

The ONLY mechanism by which components communicate
° Necessary for parallel simulation

Has a minimum, non-zero latency for communication
> Except self-links

> Except during initialization (untimed)

Transparently handles any MPI / threaded communication

/ I) a N

Component A Component B

Port X
Port Y

04/03/2018

8 1 Event

Unit of communication between two components
o Packet format is up to the communicating components

Some standardized interfaces
° Facilitate “mix and match” capability
o sst/core/interfaces/
> Memory (simpleMem)
° Defines commands & event format for communication with memory
> Network (simpleNetwork)

° Defines a header for events sent through a network component

04/03/2018

19 I Simulation lifecycle

Birth
> Create graph of components using Python configuration file
° Partition graph and assign components to MPI ranks
° Instantiate components and connect via links
° Initialize components using their init() functions

> Setup components using their setup() functions

Life
> Send events

> Manage clock and event handlers

Death
° Finalize components using their tinish() functions
> Output statistics

° Cleanup simulation, delete components
04/03/2018

& Ay ‘
y s o4
hS .
g
, B >
ik .
', . = N :
y Mt g ¥
— K
=
- - 4 Uy
! IlI|
LT LT

04/03/20
18

21 | IBM Memory Controller Design

Stacked DRAM NVM-Based DIMM
Improvements to IBM CramSim to enable aiERERE
threaded simulations (faster analysis time) —
Improved multi-level memory models /
Performance and scaling improvements

(event-driven (clock-less) memory models)
MLM Controller

Scratchpad support I

New TLB model Processor

04/03/2018

Network Bandwidth Tapering

22
107 Baseline 107 2x Core Taper 10° 4x Core Taper
Q
= 2 2 2
g 10% ¢ H 10 H 10
@
8
S 10t H 10! 10t
g
Q.
wn
g 10° H 10° H 10°
=

Questions that most frequently come up in DOE procurements

1x 10x 100x 1000x
Compute Speedup

1x 10x 100x 1000x
Compute Speedup

1x 10x 100x 1000x
Compute Speedup

Parallel Efficiency

=
o

.
o)

o
o

o
I

o
N

o
o

Baseline

Compute Speedup

Unstructured nearest neighbor study shows little sensitivity to tapering (save money)

04/03/2018

1.0

{ 0.8
{ 0.6
H 0.4

{ 0.2

J 0.0
1x 10x 100x 1000x

2x Core Taper 4x Core Taper

1.0

H 0.8 8

H 0.6

H 0.4

H 0.2

U 0.0 .
1x 10x 100x 1000x 1x 10x 100x 1000x
Compute Speedup Compute Speedup

Bl Linear
B Random
B TreeMatch
1 APHID

23 | Multi-Level Memory/PIM Analysis

Processing-in-memory

Multi-Level Memory
o HW Tradeoffs: capacity ratios,

> SW Tradeoffs: application, runtime, OS,
HW control

Scalable Network Studies
> Network on Chip

° Cache coherency

Scheduling

04/03/2018

PIM Normalized Execution Time

0.825 -

0.55 -

0.275 -

GUPS Stream PF MiniFE Lulesh

2120 | *Thin —

%115 —(®Medium /«J’"""V

Bl EIERnE e
ICore”Cor!”Con"ConeI |Cou||Con||Con"Cnrel
A

1K 2K 4K 8K 16K 32K 64K FT Y
Ranks —FT Ariel Trace Capture Tj—

PIN

o Ay
—
e
Y .
L~
- o
o
- b))
f —— e ——— " F:
ot &
%3
——
—
R | 1 |

04/03/20
18

5 | SST in Parallel

SST was designed from the ground up to enable
scalable, parallel simulations

Components are distributed among MPI ranks &
threads

Links allow parallelism
> Hence, components should communicate via links only
° Transparently handle any MPI communication

o Specified link-latency determines MPI synchronization
rate

04/03/2018

MPI Rank O

Same configuration file

Comp1

MPI Rank O

Comp3

MPI Rank 1

Comp5

MPI Rank 2

Comp7

MPI Rank 3

26 I SST Discrete Event Algorithm

SST Simulation are comprised of components connected by links
Components interact by ending events over links

Each link has a minimum latency (specified in SI time units)

SST
SST SST Link SST SSTLink \| Component
Component] Component) i
Latency: 2ns Latency: 3ns Type: NoC
Type: Core Type: Cache Router
SST
C BST SST Link Component
omponent ¢ Latency: 4ns Type: NoC
Type: DMA - Roi1ter

04/03/2018

27 ‘ Existing SST Element Libraries

"= memHierarchy - Cache and Memory

: = ini - Cache prefetchers
Detailed Memor cassiill b
T - DRAMSIm - DDR
= NVDIMMSim - Emerging Memories
= Goblin — HMC
g Lace-DaseC ariel - PIN-based Tracing
Processor Model
Cycle-based Processor EREWEI® - Gemb5 integration layer
Model
High-level Program " ember - State-machine Message generation
Communication = firefly - Communication Protocols
Models " hermes - MPI-like interface
Cycle-based Network
Model = Merlin - Network router model and NIC
High-level System = scheduler - Job-scheduler simulation models

Workflow Model

04/03/2018

s I New Additions to SST: Core

D

N s D

04/03/2018

Overhaul of the SST element information description system

Improved external component support (much easier to support than external
development community)

HDF5 & JSON support for statistics output
Improved thread scaling
FEasier Builds (removed Boost Dependency)

Early support for running SST on IBM POWER

Implementation of a “stop at” wall time feature for working within scheduled
cluster environments

Support for describing co-ordinates of components in Python configuration (for
visualizations)

29 | New Additions to SST

Application SM

1. Support for memory modeling in large-scale Engine
network analysis ‘

2. Barly support for some SHMEM based :
communication models (in progress) = MemHierarchy

m Merlin Network

Communication

5. Juno Processor Model
> Simplified processor model

°> Designed for extensibility

> Uses: Tutorial, Correctness checking

04/03/2018

30 I New Additions : Memory

04/03/2018

Improvements to IBM CramSim for enabling
threaded simulations

Improved multi-level memory models

Performance and scaling improvements (event-
driven (clock-less) memory models)

Scratchpad support
New TLB model

Stacked DRAM

NVM-Based DIMM

NVM
Chip

NVM
Chip

NVM NVM
Chip Chip
I

/

cl
oA
Policy

Mapping

MLM Controller

Processor

31 | New Additions : SST/Macro

Macro / Metlin Integration

Beta release of OTF2 trace replay skeleton

1
2
5. Beta release of Clang-based auto-skeletonization source-to-source tools
4

Integrated job launcher components for simulating PBS or SLURM-like batch
systems

04/03/2018

» | New Additions : Components : Messier

NVM-Based DIMM Bank
/

Rank

Messier: NV Memory model]

Focus on NV-DIMMs e.g.: g s S
° # Banks, Latencies

> Row buffers, write buffers

site | | noqtenee, | | em, |
5]i . di d . Controller Request | Scheduler M:::;;r|
pO cies, outstan ng fequeStS, or Cflﬂg
Rank Rank

> Address mapping

@ If (size > threshold and writes are less than max)
flush one write entry

Add the dispatched transaction to outstanding
d req @ and execute it
Write Buffer
@ find a transaction ready to execute
write request transactions

Memory Controller Backend

Report: SAND2017-1830

04/03/2018

33 ‘ More SST Use Cases

NVM-Based DIMM B
ank

[Rank

Emerging NVM
| | I | I le I | I'E B Technologies

NVM Internal Buffer Tracker Leveler
Controller Request Power
Buffer ey Manager

I Memory Bus

Vault

Layer |

DDR |

|DDR|

Directory Directory
Controller Controller

Directory
Controller

vvy

Router

A]
TQuad”

v
"Quad”

L2

® | Multi-Level Memory

o[oo f[o || o]

[[[[(HBM+DDR+NV)

Core

Core || Core || Core

Core

Core || Core || Core

H

A H’ A
f Ariel Trace Capture

o

PIN
L1 .
e Y T —— Y ____ __ Photonic Network
L2 Topology & Routing
L3
pele|p| [p|p|P| [P[P]P ple|p| [p|p[r]| [p|P[P
Scratch Scratch Scratch Scratch Scratch Scratch
||$|| "$" "$,, n$n ||$u ||$u
Fast Fast Fast Fast Fast Fast
Slow Slow Slow
Memory Memory Memory Network
y
Network Slow Slow Slow
Memory Memory Memory

04/03/2018

Dissaggregated Memory

Future Directions

CHISEL HDI. Simulation via Verilator & Chisel

° Low-level hardware design

rr/r}l ‘lﬁ m ° Path to tape-out (Chisel)
New Processor Models

P RISC RBEN

° Juno

34

Improved NoC Models |

o Faster Performance
> NoC QoS
°> Optical Circuit Routing

04/03/2018

Future Directions: Neural Inspired

CrossSim SST Component

Control | | o atvivo 1 00

nit [Custom processors / accelerators

State machine?

AR B, ¥ e Generic models (e.g. NEST, N2A)

HW
L____N_,t_k___'::“" Explore
__ etwor .
> Inte?ace ° System Integration Issues
ST r_;q;r:(,;yni o Architectural Bottlenecks
Component | ___ ~ ~~ 7777 ! o 14
=" ¥ raaar Programmability
rCTT T ! I Activation |
U Allows...
> Exploration of conventional / Neural interface (e.g. different
PYNN | oy message routing protocols)
Confi SST Confi 1
\J’__ > Allows Neural “cores” to connect to conventional processors,

network, memory, etc... (explore speeds and feeds’)
° Scalability: SST can utilize thread- and MPI-level parallelism

Neural | | Conv.

M
Core Proc em Net

04/03/2018

36 I Future Directions: More Framework Integration

SSTNt — Beyond Moore Computing
System | "pio - .
> New Architectures (e.g. Neuromorphic)

Node/Board e > New Devices (e.g. Memristor)

o — > New Programming Models / Algorithms

e StaRCke.dthTry Requires Cross-Stack Optimization
COmpOIETt gCBh > Device to System Level

Cireuit Loscoae. ° Use of Dakota / INDRA to automate design space exploration

. Requires Inter-disciplinary approach
Deviee i > SST Simulator as “Clearinghouse of Ideas”
Dakofa > Common language ot exploration

Optimization Framework

04/03/2018

37 | Conclusion

SST is a Parallel, Flexible, Open architectural simulator

Large library of Memory, Processor, Network, and other models
7.1 Release

° Usability enhancements in the Core

> New Memory, Network, Processor models

Future SST
> More & better components (RISC-V, Network, etc...)
° Chisel, Occam integration
> Beyond Moore Framework
> <Your Use Case Here>

04/03/2018

b] et L XTRE r
. 4 5 : 3
x s ” - gy T _‘L
4 - - . e :
- g AN <t S -_—~"-, =
- - N .
-)
- % \ il E e g T
z * et 3 -
- .
< t =] M .-
¥< . ‘F— - . -i . “&‘" = r r' 1 - - !‘ - (a % - " '
=5} = Sy - | - .
S L e -.__«-:,h“-’-...r'—— “__ > : . -
— I‘\._. ~

P

39 I Configuring a Simulation

SST uses a Python configuration file

04/03/2018

CPU CPU
L1 L1
Bus

o Defines global parameters for the simulation

o Defines and conﬁgures components

0 Speciﬁes links and link latencies between components

Vs

N\

N

Memory

Vs

N\

Memory

o\

J

L2

Directory

Directory

Network

CPU CPU
L1 L1
Bus

L2

« I Part |: Configure SST

Global simulation parameters

sst.setProgramOption(“stopAtCycle”,; “100ms”)

° Kill simulation (nicely!) 1f it runs to 100ms

sst.setProgramOption(“timebase”, “Ins”)
° Tell SST that we’re simulating at a granularity around 1ns

> Used by SST core when time units are not specified by a component
° Not a lower limit! (clocks can be > 1 GHz)

04/03/2018

s | Part 2: Define components

)y <«

Define: sst.Component(“name”,

type”)

Configure: addParams ({ “parameter” : value, ... })

demo.py: line 172

Component name

Component type

network = sst.Component(“router”, “merlin.hr_router®)

network.addParams({

“xbar_bw” : “51.2GB/s”,
“link _bw” : “25.6GB/s”,

“num_ports” : 4,

“flit size” : “72B:

“topology” : “merlin.singlerouter”,

((id)) : C(@)J,
“input_buf size”
“output buf size”

})

04/03/2018

: “2KB”,
: “2KB”

_—

Parameters

42 ‘ SSTInfo: Getting component info

Prints parameters, port names, and statistics

04/03/2018

$ sstinfo memHierarchy.Cache

Optionally filter for a specific
component

PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”

ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT © = Cache [MEMORY COMPONENT] (Cache Component)

NUM PARAMETERS = 32

PARAMETER @ = cache_frequency (Clock frequency with units. For L1ls, this is

usually the same as the CPU's frequency.) [REQUIRED]

PARAMETER 21 =

<¥\\\\\\\\

NUM PORTS = 4

Port name

Parameter

network bw (Network link bandwidth.) [1GB/s]

™S

Definition

AN

N

“REQUIRED” or
default value

PORT 3 [1 Valid Events] = directory (Network link port to directory)
VALID EVENT © = MemHierarchy.MemRtrEvent

NUM STATISTICS = 32

\

Type of event(s) used on the link

S

Definition

s | Part 3: Defining links

Example: Connect socket 0’s .2 cache (I12cache() to network
° Create a link: sst.Link(“name”
° Detine link endpoints: connect(endpointl, endpoint2)
> Endpoint is defined as: (Component, Port, Latency)
°> Note: Latencies of the two endpoints can differ

Link name
~

demo.py: line 220

k////

12cache@® network link = sst.Link(“l2cache® network link”)

12cache® network link.connect(
(12cache@, “directory”, “50ps”),

(network, “porte”, “5@ps”))\ -
ndpoints

04/03/2018

44 Running SST

Usage: sst [options] configFile.py

Common options:

-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default:
sst_output)

--add-1ib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple | Specify the partitioning mechanism for parallel runs

rrobin | linear | lib.partitioner.name>

--model-options “<args>” Command line arguments to send to the Python
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in

“Dot” format to <filename>

04/03/2018

ss I Running a Simulation

Launch simulation
$ sst demo.py

Output

Inserting stop event at cycle 100ms, 100000000000

ARIEL-SST PIN tool activating with 4 threads

ARIEL: Default memory pool set to ©

ARIEL: Tool is configured to begin with profiling immediately.
ARIEL: Starting program.

Performing iteration ©

Performing iteration ©

Performing iteration ©

Performing iteration ©

Simulation is complete, simulated time: 125.209 us

04/03/2018

s | Finally: Getting help

SST wiki contains lots of information (www.sst-simulator.org)

> Downloading, installing, and running SST

°> Element libraries and external components

> Guides for extending SST

o Information on APIs

° Information about current development efforts

htt

s:/ /github.com/sstsimulator

04/03/2018

https://github.com/sstsimulator

s | Getting and installing SST

www.sst-simulator.org
° Current release (7.1) source download

° https://github.com/sstsimulator/sst-elements

° Detailed build instructions including dependencies for Linux & Mac

° Links to mailing lists for updates and support

http://www.sst-simulator.org/
https://github.com/sstsimulator/sst-elements

s I MemHierarchy: Cache structure

CacheController
Routes incoming events to handlers
Manages retry of buffered events in
the MSHRs

Manages cache allocations and
evictions

CacheArray

» Stores cache lines -
data and coherence
state

* Replacements via the
replacement policy
manager

CoherenceController

MSHRs * Manages coherence state

» Buffers stalled » Receives events from CacheController
and blocked » Sends outgoing events
events » Forwarded requests, responses, etc.

 Decides when events need to stall

so | MemHierarchy: Main memory

MemoryController
> Contains a ‘backing store’ for simulated data
> Can communicate over a network or via a direct link with a cache or directory

° Interfaces with multiple memory backends

Available backends
> SimpleMem — basic read/write with associated latencies
> DRAMSIm2 — DRAM (external)
> NVDIMMSim — Non-volatile memory (e.g., Flash) (external)
> HybridSim — non-volatile memory with a DRAM cache (external)
> VaultSimC — stacked DRAM

51 I Merlin: Network simulator

Low-level, flexible networking components that can be used to simulate high-speed
networks (machine level) or on-chip networks

Capabilities
° High radix router model (hr_router)
° Topologies — mesh, n-dim tort, fat-tree, dragonfly

Many ways to drive a network
° Simple traffic generation models
° Nearest neighbot, uniform, uniform w/ hotspot, normal, binomial
> MemHierarchy
° Lightweight network endpoint models (Ember — coming up next)
° Or, make your own

2 | Ember: Network traffic generator

Light-weight endpoint for modeling network traffic

° Enables large-scale simulation of networks where detailed modeling of endpoints would
be expensive

Packages patterns as motifs
° Can encode a high level of complexity in the patterns

° Generic method for users to extend SST with additional communication patterns

Intended to be a driver for the Hermes, Firefly, and Merlin communication modeling
stack

> Uses Hermes message API to create communications

° Abstracted from low-level, allowing modular reuse of additional hardware models

53 1 Ember: Overview

==
?
-

High Level Communication Pattern and Logic
Generates communication events

Event to Message Call, Motif Management
Handles the tracking of the motif

Message Passing Semantics
Collectives, Matching etc

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing etc

s+ | Ember: Motifs

Motifs are lightweight patterns of communication
° Tend to have very small state
° Extracted from parent applications

> Models as an MPI program (serial flow of control)

> Many motifs acting in the simulation create the parallel behavior

Example motifs
> Halo exchanges (1, 2, and 3D)

> MPI collections — reductions, all-reduce, gather, barrier

> Communication sweeping (Sweep3D, LU, etc.)

55 | Ember: Motifs (continued)

The EmberEngine creates and manages the motif
> Creates an event queue which the motif adds events to when probed

> The Engine executes the queued events in order, converting them to message semantic
calls as needed

> When the queue is empty, the motif is probed again for events

Events COIICSpOﬁd to a SpCCiﬁC action

° E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

s« | Firefly: Network traffic

Purpose: Create network traffic, based on application communication patterns, at
large scale

o Enables testing the impact of network topologies and technologies on application
communication at very large scale

Scales to 1 million nodes

Supports multiple “cores” per Node
° Interaction between cores limited to message passing

Supports space sharing of the network
° Multiple “apps” running simultaneously

s7 | Firefly: Simulating large networks

A network node consists of

° Driver (the “application”) Eb
mber

> NIC (driver)

o Router

Firefly Hades

Nodes are connected together via the routers to form the network

° Fat tree, torus, etc. Firefly NIC

Firetly is the interface between the driver and the route Merlin Router

° Message passing library = Firefly Hades
> NIC = Firefly NIC !

58 Scheduler

Models HPC system-wide job scheduling

Three components
° Sched: schedules and allocates resources for a stream of jobs
° Node: runs scheduled jobs on their allocated resources

° FaultInjection: injects tfailures onto the resources

The scheduler is currently a stand-alone element library
° The schedComponent and nodeComponent must be used together

° The faultlnjecttonComponent is optional

